

FueL CelL Embedded ENgine (FLyCLEEN)

John Hong, General Electric Research

FLyCLEEN enabling future of clean and sustainable flight

by innovatively integrating high power density Metal-Supported Solid Oxide Fuel Cell (MS-SOFC) with gas turbine genset.

Range Extenders for Electric
Aviation with Low Carbon and
High Efficiency (REEACH)

FLyCLEEN Team

Team member	Location	Role in project
GE Research	Niskayuna, NY	System Design, MS-SOFC Design, Fab & Testing, T2M
Precision Combustion Inc.	North Haven, CT	CPOX Synfuel Reformer Design and Development
West Virginia University	Morgantown, WV	SOFC Anode Protection Coating Development

Dr. John Hong Lead Combustion Engineer Gas turbine combustion, Combustion dynamics

Dr. Anil Duggal Chief Scientist – Energy Materials Energy Storage, battery, fuel cells, electrical & optical materials and systems

Dr. Hani A.E. Hawa Research Engineer H₂ Production, Gas Separation Membranes, Additive Manufacturing

Mr. Richard Hart Senior Material Scientist SOFCs, Battery & Energy storages

Dr. Edward Sabolsky
Professor of Mechanical and
Aerospace Engineering
Ceramics, Electronic Materials,
SOFC/SOECs, Nanomaterials,
Ceramic Processing

Subir Roychoudhury, D.E. VP, Research & Engineering Fuel Reforming, SOFCs, Catalytic Combustion

Project Overview & Innovation

MS-SOFC embedded directly into combustion chamber of gas turbine engine generator

- Leverages gas turbine Balance-of-Plant (BOP)
- ► Robust MS-SOFC for high pressure, 10x power density
- Synfuel integrated with high-efficiency C-POX
- Thermodynamic synergies with waste heat recovery

Phase 1 Goal is to demonstrate FLyCLEEN concept operability & to develop high specific power, robust SOFC

Performance Metrics	ARPA-e Goal	FLyCLEEN
ESPG system specific energy [kWh/kg]	> 3	~3.7
Powertrain system specific power [kW/kg]	> 0.75	~1.3
Cost of fuel at 100MWh scale [\$/kWh]	< 0.15	~0.14
Initial capital cost of ESPG system [\$/kW]	< 1000	~940

Task Outline & Technical Objectives

Phase 1 Focus:

- Develop robust MS-SOFC for high specific power
- Demonstrate SOFC-Combustion system operation at high pressure
- Potential Phase 2: 5kW CPOX-SOFC-Combustion Chamber Prototype fabrication and demo

Phase 1 Tasks

System performance modeling

Develop MS-SOFC with low ASR & optimized geometry

Coupled mechanical-thermal modeling of SOFC

Integrated sub-system testing at high pressure

C-POX reformer development and design (by PCI)

Develop nano anode coating material (by WVU)

Ensure FLyCLEEN system meets performance target (power, weight, cost, etc.)

MS-SOFC specific power > 1kW/kg

Enable efficient design process of robust MS-SOFC

System operability demo & robustness of MS-SOFC

Enable using CNLF for system at high efficiency with desired fuel composition for SOFC

Improve durability of SOFC electrode

MS-SOFC Development

Metal-Supported (MS) SOFC Stack

- Thin active ceramic coatings on metal substrates
- Most robust for engine environment

Thermal Spray Method for SOFC fabrication

- Low-cost & high-rate deposition
- Allows redesign of structures
- Improved anode electrical contact
- Integrated anode seal

SOFC Performance

Metal-Supported (MS) SOFC 3-Cell Stack

- ► 80% of Phase 1 power density target achieved
- Specific power 15x improvement during Year 1

High-Pressure Testing

3-Cell Dummy SOFC Stack Integrated with Combustor

- Tested in a single nozzle rig at ~25-atm in Year 1
- Plan to test 10-cell SOFC stack integrated with combustor in Year 2

- ✓ Operability at high-pressure
- Mechanical integrity

Dummy SOFC Stack

Synfuel C-POX Reformer Development

CPOX Testing @ 5 kW_{th} w. IPK (Inlet Air @ \sim 200°C; O/C = 1.05, 1 atm)

Stable temperature profile Data shows >95% of max. theoretical efficiency LHV-based efficiency >80% $H_2+CO > 47\%$ (equilibrium H_2+CO is 48%)

Nano Anode Coating Material Development

Nano-Catalyst Evaluation in Accelerated SOFC Tests

 CeO_2 deposition with S1 at 1.0 M concentration was replicated in a SOFC to yield a deposition density of 41.8 mg/cm³.

Test Conditions

• Temperature: 750 °C

Anode: 20% H₂; 30% CH₄; 50% N₂

• Cathode: 100% Air

Overall improvement in performance (+170%) 65% improvement in degradation rate [mV/hr]

Anode Current Collection Layer (CC)

- Added Porosity 70% Fine NiO (0.5-1.5 μm) 30% Fine-grade YSZ (0.35-0.45 μm)

CC: NiO/VS7

SOFC Design

Anode Active Laver (AL)

50% Fine NiO (0.5-1.5 μm) 50% Fine-grade YSZ (0.35-0.45 μm)

AL: NiO/YSZ

Electrolyte

YSZ-8 Electrolyte 25 mm diameter 0.25-0.30 mm Thickness

Electrolyte: YSZ

Barrier Layer (BL)

80% Mid-grade GDC (0.1-0.4 μm) 20% Nano-grade GDC (5-10 nm)

BL: GDC

Cathode Active Layer (AL)

50% LSCF (0.7-1.1 μm) 50% Mid-grade GDC (0.1-0.4 μm)

AL: LSCF/GDC

Cathode Current Collection Layer (CC)

- Added Porosity 70% LSCF (0.7-1.1 µm) 30% Mid-grade GDC (0.1-0.4 µm) CC: LSCF/GDC

Risk Update

#	Risk
1	SOFC specific power
2	SOFC mechanical integrity
3	Anode degradation a: nano-particle coarsening & long-term stability b: anode porosity
4	Weight of new components
5	Life of new components
6	Projected ESPG cost
7	C-POX reformer a: performance & manufacturability b: durability

Technology-to-Market Approach

GE Research will partner with GE Business Units to commercialize FLyCLEEN technology

Land-based aero-derivative provides early product opportunity

- Offer efficiency benefit & de-carbonization approach for power generation
- Mature reliability for aviation

Q & A

https://arpa-e.energy.gov

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001344. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

